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Abstract: Extraction of high resolution information signals is 

important in all practical applications. The Least Mean Square 

(LMS) algorithm is a basic adaptive algorithm has been 

extensively used in many applications as a consequence of its 

simplicity and robustness. In practical application of the LMS 

algorithm, a key parameter is the step size. As is well known, if 

the step size is large, the convergence rate of the LMS algorithm 

will be rapid, but the steady-state mean square error (MSE) will 

increase. On the other hand, if the step size is small, the steady 

state MSE will be small, but the convergence rate will be slow. 

Thus, the step size provides a tradeoff between the convergence 

rate and the steady-state MSE of the LMS algorithm. An intuitive 

way to improve the performance of the LMS algorithm is to 

make the step size variable rather than fixed, that is, choose 

large step size values during the initial convergence of the LMS 

algorithm, and use small step size values when the system is 

close to its steady state, which results in Variable Step Size LMS 

(VSSLMS) algorithms. By utilizing such an approach, both a fast 

convergence rate and a small steady-state MSE can be obtained.  

By using this approach various forms of VSSLMS algorithms are 

implemented. Similar to in the case of the LMS algorithm, a 

variable step size algorithm is also necessary to obtain both fast 

convergence rate and small steady state MSE. In this paper 

various forms of VSSLMS algorithms, which are robust to high 

variance noise signals are implemented for the construction of 

adaptive noise cancellers (ANC). Finally we will apply these 

ANC structures for filtering speech signals. In order to measure 

the quality of these filters, SNR measurement is considered as 

quality factor. 

 
Keywords:Adaptive filtering, LMS algorithm,MSE,Noise 

cancellation, Speech enhancement. 

 

1. Introduction 
 

In real time environment speech signals are corrupted 

by several forms of noise such as such as competing 

speakers, background noise, car noise, and also they are 

subject to distortion caused by communication channels; 

examples are room reverberation, low-quality 

microphones, etc. In all such situations extraction of high 

resolution signals is a key task. In this aspect filtering 

come in to the picture. Basically filtering techniques are 

broadly classified as non-adaptive and adaptive filtering 

techniques. In practical cases the statistical nature of all 

speech signals is non-stationary; as a result non-adaptive 

filtering may not be suitable.   Speech enhancement 

improves the signal quality by suppression of noise and 

reduction of distortion. Speech enhancement has many 

applications; for example, mobile communications, robust 

speech recognition, low-quality audio devices, and 

hearing aids.  

 

Many approaches have been reported in the literature to 

address speech enhancement. In recent years, adaptive 

filtering has become one of the effective and popular 

approaches for the speech enhancement. Adaptive filters 

permit to detect time varying potentials and to track the 

dynamic variations of the signals. Besides, they modify 

their behavior according to the input signal. Therefore, 

they can detect shape variations in the ensemble and thus 

they can obtain a better signal estimation. The first 

adaptive noise cancelling system at Stanford University 

was designed and built in 1965 by two students. Their 

work was undertaken as part of a term paper project for a 

course in adaptive systems given by the Electrical 

Engineering Department. Since 1965, adaptive noise 

cancelling has been successfully applied to a number of 

applications.  Several methods have been reported so far 

in the literature to enhance the performance of speech 

processing systems; some of the most important ones are: 

Wiener filtering, LMS filtering [1], spectral subtraction 

[2]-[3], thresholding [4]-[5]. On the other side, LMS-

based adaptive filters have been widely used for speech 

enhancement [6]–[8]. In a recent study, however, a steady 

state convergence analysis for the LMS algorithm with 

deterministic reference inputs showed that the steady-state 

weight vector is biased, and thus, the adaptive estimate 

does not approach the Wiener solution. To handle this 

drawback another strategy was considered for estimating 

the coefficients of the linear expansion, namely, the block 

LMS (BLMS) algorithm [9], in which the coefficient 

vector is updated only once every occurrence based on a 

block gradient estimation. A major advantage of the 

block, or the transform domain  LMS algorithm is that the 

input signals are approximately uncorrelated. Recently 

Jamal Ghasemi et.al [10] proposed a new approach for 

speech enhancement based on eigenvalue spectral 

subtraction, in [11] authors describes usefulness of speech 

coding in voice banking, a new method for voicing 

detection and pitch estimation. This method is based on 

the spectral analysis of the speech multi-scale product 

[12].   

 

  In practice, LMS is replaced with its Normalized 

version, NLMS.  In practical applications of LMS 

filtering, a key parameter is the step size. If the step size is 

large, the convergence rate of the LMS algorithm will be 

rapid, but the steady-state mean square error (MSE) will 

increase. On the other hand, if the step size is small, the 

steady state MSE will be small, but the convergence rate 

will be slow. Thus, the step size provides a tradeoff 

between the convergence rate and the steady-state MSE of 

the LMS algorithm. The performance of the LMS 
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algorithm may be improved by making the step size 

variable rather than fixed. The resultant approach with 

variable step size is known as variable step size LMS 

(VSSLMS) algorithm [13].  By utilizing such an 

approach, both a fast convergence rate and a small steady-

state MSE can be obtained. Many VSSLMS algorithms 

are proposed during recent years [14]-[17]. In this paper, 

we considered the problem of noise cancellation in speech 

signals by effectively modifying and extending the 

framework of [1], using VSSLMS algorithms mentioned 

in [14]-[17]. For that, we carried out simulations on 

various real time speech signals contaminated with real 

noise. The simulation results show that the performances 

of the VSSLMS based algorithms are comparable with 

LMS counterpart to eliminate the noise from speech 

signals. 

2. Adaptive Algorithms 

       

In this paper we considered various speech signals 

contaminated with various forms of real noise to 

demonstrate the concept of adaptive noise cancellation. 

Figure 1 shows a block schematic of a real transversal FIR 

filter, here the input values are denoted by u(n), the filter 

order is denoted by M, and z-1 denotes a delay of one 

sample period. Adaptive filters utilize algorithms to 

iteratively alter the values of the impulse response vector 

in order to minimize a value known as the cost function. 

The cost function, ξ(n), is a function of the difference 

between a desired output and the actual output of the FIR 

filter. This difference is known as the estimation error of 

the adaptive filter, e(n) = d(n) - y(n). 

 

Z-1 Z-1
_ _ _ _ _ _ _ 

Z-1

+
_

d(n)

y(n)

e(n)

.  .  .  .

w0 w1 wN-1

x(n) x(n-1) x(n-N+1)

Figure 1: Block diagram of an transversal FIR adaptive 

filter. 

2.1 Basic Adaptive Filtering Structure 

 
Figure 2 shows an adaptive filter with a primary input 

that is noisy speech signal s1 with additive noise n1. While 

the reference input is noise n2, which is correlated in some 

way with n1. If the filter output is y and the filter error e= 

(s1+n1)-y, then 

 
              2 =  (s1 + n1)

2 – 2y (s1 + n1) + y2  

              =  (n1 – y)2 + s1
2 + 2 s1 n1 – 2y s1.          (1) 

 

Since the signal and noise are uncorrelated, the mean-

squared error (MSE) is 

 

         E[e2]=E[(n1 – y)2]+E[s1
2]                          (2) 

 

      Minimizing the MSE results in a filter error output 

that is the best least-squares estimate of the signal s1. The 
adaptive filter extracts the signal, or eliminates the  noise, 

by iteratively minimizing the MSE between the primary 

and the reference inputs. Minimizing the MSE results in a 

filter error output y that is the best least-squares estimate 

of the signal s1. 

 

 
Figure 2: Adaptive Filter Structure. 

2.2 Conventional LMS Algorithms 

 
The LMS algorithm is a method to estimate gradient 

vector with instantaneous value. It changes the filter tap 

weights so that e(n) is minimized in the mean-square 

sense. The conventional LMS algorithm is a stochastic 

implementation of the steepest descent algorithm. It 

simply replaces the cost function ξ(n) = E[e2(n)] by its 

instantaneous coarse estimate.  

The error estimation e(n) is    

    e(n) = d(n) – w(n) Φ(n)                                       (4) 

 

Coefficient updating equation is  

 

 w(n+1) =w(n) + µ Φ(n) e(n),                                     (5) 

 

Where µ is an appropriate step size to be chosen as  

 0 < µ <    for the convergence of the algorithm. 

 

Normalized LMS (NLMS) algorithm is another class of 

adaptive algorithm used to train the coefficients the 

adaptive filter.This algorithm takes into account variation 

in the signal level at the filter output and selecting the 

normalized step size parameter that results in a stable as 

well as fast converging algorithm. The weight update 

relation for NLMS algorithm is as follows 

 

      w(n+1) = w(n) + µ(n) Φ(n) e(n),                        (6) 

 

The variable step can be written as,  

 

   µ(n) = µ / [ p + Φt(n) Φ(n) ]                                   (7)        

 

 
Here µ is fixed convergence factor to control 

maladjustment, µ(n) is nonlinear variable of input signal, 
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which changes along with p. The step diminishes and 

accelerates convergence process. The parameter p is set to 

avoid denominator being too small and step size 

parameter too big.  

 

The advantage of the NLMS algorithm is that the step size can be 

chosen independent of the input signal power and the number of tap 

weights. Hence the NLMS algorithm has a convergence rate and a 

steady state error better than LMS algorithm. 

2.3 Gradient based variable step size (VSSLMS) LMS 

Algorithms. 

 
  In this paper we considered four types of gradient based 

VSSLMS algorithms for the implementation of adaptive 

noise cancellers based on [14]-[17]. 

 

2.3.1. Korni’s VSSLMS algorithm: 

 

In this algorithm the convergence factor μ is made 

time-varying in inverse proportion to the input power. As 

a result this algorithm is shown to be effective for a 

variety of applications. 

 

             Wi(n+1) = wi(n)+μ(n)e(n)xi(n)         0 ≤ i ≤ N      

 

Keep the μ(n) large before the algorithm converges and 

to reduce it as the algorithm converges. The purpose of 

the algorithm is to find the minimum of e2, e2 being a 

quadratic function of wi,  i=0,l,..., N. In other words, the 

algorithm solves the following simultaneous linear 

equations: 

                = 0            0≤ i ≤ N                   (8) 

Since  

          e(n) = d(n)-  

 

 Where d(n) is the desired output, eq. (8) can be rewritten 

in vector form as   

                                             ||eX|| = 0                      

                Where ||.|| is the regular vector norm, and  

                        X=[x0, x1,……,xM]                     

                    μ(n) should be bounded by  

                      0 ≤ μ(n) ≤ μ’               

and if the inputs are identically Gaussian distributed with 

power σ2 , we have  

 

                  μ’=1/((M+1)σ2)          

             

These discussions suggest a new convergence factor, 

expressed below: 

 

              μ(n)= μ’(1-e-α||e(n)X(n)||).                               (9)        

 

Here, α > 0 is the damping parameter. In applications, the 

norm 

||.|| can be replaced by the norm square ||.||2       

    

      When ||e(n)x(n)|| is large, μ(n)=μ’, i.e., the algorithm 

is in its fast convergence state. After ||e(n)x(n)|| is greatly 

reduced, μ(n) will be very small, and the algorithm enters 

its misadjustment minimizing state. Decreasing ||e(n)x(n)|| 

causes the decreasing of μ(n).Since the  misadjustment is 

directly proportional to μ(n), the misadjustment is thus 

reduced [18]-[19]. 

 

  In the case of a non-stationary input, the sudden change 

of the input induces ||e(n)x(n)||  to become large, which 

brings the algorithm back to the fast convergence state 

automatically. It must be pointed out that the “crossover 

point” of these two states-fast convergence state and 

misadjustment minimizing state-is governed by the 

damping parameter α . In fact, there is no clear cut 

“crossover point,” since the  exponential function is rather 

smooth. The larger the parameter α , the larger the fast 

convergence region will be. If α is taken as infinity, then 

this new algorithm degenerates into the conventional LMS 

algorithm. As a  rule of thumb, α is to be set greater than 

unity. We note that μ(n) always keeps the algorithm 

stable. 

 

2.3.2. Kwong’s VSSLMS algorithm: 

        

  The LMS type adaptive algorithm is a gradient search 

algorithm which computes a set of weights wk that seeks 

to minimize   E(dk -X
T

kWk )The algorithm is of the form  

 

                         Wk+1 = Wk + μkXk ek      

           Where  

                                 ek = dk + XT
kW

*
k         

    

and μk is the step size. In the standard LMS algorithm μk is 

a constant. In this μk is time varying with its value 

determined by the number of sign changes of an error 

surface gradient estimate. Here the new variable step size 

or VSS algorithm, for adjusting the step size μk  yields : 

 

                             μ′
k+1 = αμk + γe2

k        0 < α < 1, 

                                                                γ > 0 

 

    and                   μmax              if μ
′
k+1> μmax 

            

           μk+1 =  μmin              if μ
′
k+1< μmin 

   

 μ′
k+1         otherwise    (10) 

 

 

 

        where 0 < μmin < μmax. The initial step size μ0 is 

usually taken to be μmax, although the algorithm is not 

sensitive to the choice. The step size μk , is always 

positive and is controlled by the size of the prediction 

error and the parameters α and γ. Intuitively speaking, a 

large prediction error increases the step size to provide 

faster tracking. If the prediction error decreases, the step 

size will be decreased to reduce the misadjustment. The 

constant μmax is chosen to ensure that the mean-square 

error (MSE) of the algorithm remains bounded. A 

sufficient condition for μmax 
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                            μmax  2/(3 tr (R))                  (11) 

 

μmin is chosen to provide a minimum level of tracking 

ability. Usually, μmin will be near the value of μ that would 

be chosen for the fixed step size (FSS) algorithm. α must 

be chosen in the range (0, 1) to provide exponential 

forgetting. 

 

2.3.3. Mathew’s VSSLMS algorithm: 

 

Consider the problem of estimating the desired 

response signal d(n) as a linear combination of the 

elements of X(n), the N-dimensional input vector 

sequence to the adaptive filter. The popular least mean 

square (LMS) adaptive filter updates the filter coefficients 

in the following manner: 

 

                  e(n) = d(n) – XT(n)H(n) 

and 

                   H(n+1) = H(n) + μ X(n)e(n)           

    

Here, ( . )T 
 denotes the matrix transpose of ( . ), H(n) is 

the coefficient vector at time n, and μ is the step-size 

parameter that controls the speed of convergence as well 

as the steady-state and/or tracking behavior of the 

adaptive filter. The selection of μ is very critical for the 

LMS algorithm. A small μ will ensure small 

misadjustments in steady state, but the algorithm will 

converge slowly and may not track the non-stationary 

behavior of the operating environment very well. On the 

other hand, a large μ will in general provide faster 

convergence and better tracking capabilities at the cost of 

higher misadjustments.  

  
The adaptive step-size algorithm that will be eliminate 

the "guesswork" involved in selection of the step-size 

parameter, and at the same time satisfy the following 

requirements:  

 

1) The speed of convergence should be fast. 

2) when operating in stationary environments, the steady-

state  misadjustment values should be very small. and  

3) when operating in non-stationary environments. 

 

    The algorithm should be able to sense the rate at which 

the optimal coefficients are changing and select step-sizes 

that can result in estimates that are close to the best 

possible in the mean-squared-error 

sense. Our approach to achieving the above goals is to 

adapt the step-size sequence using a gradient descent 

algorithm so as to reduce the squared-estimation error at 

each time. 

    

                                   e(n) = d(n) – XT(n)H(n) 

               

                 μ(n) = μ(n-1)-  e2(n) 

                         =μ(n-1)-   .  

 

                         = μ(n-1)+ρe(n)e(n-1)XT(n-1)X(n)      (12) 

    

            And 

                       H(n+1)= H(n) –            

                     

                                    = H(n)+μ(n)e(n)X(n)       (13) 

 

In the above equations, ρ is a small positive constant that 

controls the adaptive behavior of the step-size sequence 

μ(n). 

 

1) 2.3.4. Aboulnasr’s VSSLMS algorithm:  

 
    The adaptation step size is adjusted using the energy of 

the instantaneous error. The weight update recursion is 

given by 

 

            W(n+1)= w(n)+μ(n)e(n)X(n)                     

 

  And updated step-size equation is  

 

                     μ(n+1)=αμ(n)+γe2(n)                             (14) 

 

where 0<α<1,γ>0 , and μ(n+1) is set to or when it falls 

below or above these lower and upper bounds, 
respectively. The constant μmax is normally selected near 

the point of instability of the conventional LMS to 

provide the maximum possible convergence speed. The 

value of μmax is chosen as a compromise between the 

desired level of steady state misadjustment and the 

required tracking capabilities of the algorithm. The 

parameter γ controls the convergence time as well as the 

level of misadjustment of the algorithm. At early stages of 

adaptation, the error is large, causing the step size to 

increase, thus providing faster convergence speed. When 

the error decreases, the step size decreases, thus yielding 

smaller misadjustment near the optimum. However, using 

the instantaneous error energy as a measure to sense the 

state of the adaptation process does not perform as well as 

expected in the presence of measurement noise. The 

output error of the identification system is 

 

                   e(n)=d(n)-XT(n)W(n)       

                   

where d(n) is the desired signal is given by 

        

               d(n)=XT(n)W*(n)+ξ(n)                              (15)      

           

   ξ(n) is a zero-mean independent disturbance, and W*(n) 

is the time-varying optimal weight vector. Substituting (3) 

and (4) in the step-size recursion, we get 

 

   μ(n+1)=αμ(n)+γ VT(n)X(n)XT(n)V(n) 

                                   +γξ2(n)-2γξ(n)VT(n)X(n)         (16) 

 

Where V(n)=W(n)-W*(n) is the weight error vector. The 

input signal autocorrelation matrix, which is defined as 

R=E{X(n)XT(n)}, can be expressed as R=QQT, where  

is the matrix of eigenvalues, and Q is the model matrix of 
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R. using V’(n)=QTV(n) and X’(n) = QTX(n), then the 

statistical behavior of  μ(n+1) is determined.   

 

    E{μ(n+1)}=αE{μ(n)}+γ(E{ξ2(n)}+E{V’T(n) V’(n)})      

 

where we have made use of the common independence 

assumption of  V’(n) and X’(n). Clearly, the term E{ 

V’T(n) V’(n) } influences the proximity of the adaptive 

system to the optimal solution, and μ(n+1) is adjusted 

accordingly. However, due to the presence of E{ξ2(n)}, 

the step-size update is not an accurate reflection of the 

state of adaptation before or after convergence. This 

reduces the efficiency of the algorithm significantly. More 

specifically, close to the optimum, μ(n) will still be large 

due to the presence of the noise term E{ξ2(n)}. This 

results in large misadjustment due to the large fluctuations 

around the optimum. In this paper, a different approach is 

proposed to control step-size adaptation. The objective is 

to ensure large μ(n) when the algorithm is far from the 

optimum with μ(n) decreasing as we approach the 

optimum even in the presence of this noise. The proposed 

algorithm achieves this objective by using an estimate of 

the autocorrelation between e(n) and e(n-1) to control 

step-size update. The estimate is a time average e(n)e(n-1) 

of that is described as 

 

  p(n)=βp(n-1)+(1-β)e(n)e(n-1) 

                          

The use of p(n) in the update of μ(n) serves two 

objectives. First, the error autocorrelation is generally a 

good measure of the proximity to the optimum. Second, it 

rejects the effect of the uncorrelated noise sequence on the 

step-size update. In the early stages of adaptation, the 

error autocorrelation estimate p2(n) is large, resulting in a 

large μ(n) . As we approach the optimum, the error 

autocorrelation approaches zero, resulting in a smaller 

step size. This provides the fast convergence due to large 

initial μ(n) while ensuring low misadjustment near 

optimum due to the small final μ(n) even in the presence 

of ξ(n). Thus, the proposed step size update is given by 

 

                           Μ(n+1)= αμ(n)+γp(n)2     

 

The positive constant β(0<β<1) is an exponential 

weighting parameter that governs the averaging time 

constant, i.e., the quality of the estimation. In stationary 

environments, previous samples contain information that 

is relevant to determining an accurate measure of 

adaptation state, i.e.,the proximity of the adaptive filter 

coefficients to the optimal ones. Therefore, β should be 

1. For non stationary optimal coefficients, the time 

averaging window should be small enough to allow for 

forgetting of the deep past and adapting to the current 

statistics, i.e., β<1. The step size can be rewritten as 

 

   μ(n+1)=αμ(n)+γ[E{VT(n)X(n)XT(n-1)V(n-1)}]2.      (17) 

 
       It is also clear from above discussion that the update 

of μ(n) is dependent on how far we are from the optimum 

and is not affected by independent disturbance noise. 

Finally, the considered algorithm involves two additional 

update equations compared with the standard LMS 

algorithm. Therefore, the added complexity is six 

multiplications per iteration. These multiplications can be 

reduced to shifts if the parameters α,β,γ, are chosen as 

powers of 2. A summary of step size  update equation is 

shown in Table I. 

 

Table I: Summary of all VSSLMS algorithms. 

 

Name of 

the 

algorithm 

Update of the step size 

Karin’s 

VSSLMS 

μ(n)= μ1(1-e-α||e(n)X(n)||) 

μ1=1/((M+1)σ2) 

Kwong’s 

VSSLMS 

μ1
k+1 = αμk + γe2

k 

Mathew’s 

VSSLMS 

μ(n) = μ(n-1)+ρe(n)e(n-1)XT(n-

1)X(n) 

Aboulnasr’s 

VSSLMS 

μ(n+1)=αμ(n)+γ[E{VT(n)X(n)XT(n

-1)V(n-1)}]2 

 

The performance of these algorithms compared from 

the convergence characteristics shown in figure 3.  From 

the convergence curves it is clear that the performance of 

VSSLMS algorithms is better than the conventional LMS 

/ NLMS algorithms. Among the four VSSLMS algorithms 

Aboulnsr’s algorithm is better than the other. From the 

figure it is clear that the VSSLMS algorithms converge 

very slowly at the beginning, but speed up as the MSE 

level drops. 
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Figure 3:  Convergence Characteristics of various 

algorithms. 

3. Simulation Results 

 

To show that VSS LMS algorithms are appropriate for 

speech enhancement we have used real speech signals and 

real noisy signals. These real speech signals are shown in 
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figure 4. The sample-I is a practically recorded signal with 

53569 samples. Sample-II is obtained from database and it 

has 68689 samples. Sample-III has 48136 samples, 

sample-IV is a real signal  with 50000. These are shown 

in figure 4. In the figure number of samples is taken on x-

axis and amplitude is taken on y-axis. 
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Figure 4: Real Speech Signals (a). Sample-I, (b). Sample-

II,(c). Sample-III,(d). sample-IV. 

To evaluate the performance of the adaptive algorithms 

and to prove the non-stationary tracking performance of 

the algorithms, both synthetic and real noises are taken. 

Some noises are shown in figure 5. 

 

3.1 Characteristics of FIR filter 

 

For the implementation of adaptive noise canceller we 

have chosen a second order FIR filter. The considered 

filter is a direct form II stable filter.  The numerator length 

is two, denominator length is three, number of  multipliers 

are two, number of adders is one, number of states are 

two, multiplications per input sample are two, additions 

per input sample is one. The transfer function of the filter 

is given by, 

 

       H(z) = 2Z2 – 5Z+2  / 2Z2(Z-1).  

 

The magnitude – phase response, pole-zero plot and 

impulse response of the considered FIR filter are shown in 

figure 6(a), 6(b) and 6(c) respectively. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-5

0

5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-0.5

0

0.5

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1

0

1

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-2

0

2

(d)

 
Figure 5: Synthetic and real noises used in this paper (a). 

Random noise (b). High voltage spark noise, (c). Speaker 

noise, (d). Battle field noise. 
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Figure 6(a): Magnitude and Phase response of the FIR 

filter. 
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Figure 6(b): Pole Zero plot of the FIR filter. 
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Figure 6(c): Impulse response of the FIR filter. 

 

3.2. Simulation Results for Random Noise removal 

 

 As a first step in adaptive noise cancellation 

application, the speech signal corresponding to sample-I is 

corrupted with random noise and is given as input signal 

to the adaptive filter shown in figure 2.  As the reference 

signal must be somewhat correlated with noise in the 

input, the random noise signal is given as reference signal. 

The filtering results are shown in figures 7 and 8. To 

evaluate the performance of the algorithms signal-to-noise 

(SNR) improvement is measured and tabulated in Table 

II. 
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Figure 7:Typical filtering results of random noise removal  

(a) Original Speech Signal, (b) noisy signal, (c) recovered 

signal using LMS algorithm, (d) recovered signal using 

NLMS algorithm. 
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Figure 8: Typical filtering results of random noise 

removal  (a) recovered signal using Karni’s VSSLMS 

algorithm, (b) recovered signal using Kwongi’s VSSLMS 

algorithm, (c) recovered signal using Mathew’s VSSLMS 

algorithm, (d) recovered signal using Aboulnasr’s 

VSSLMS algorithm.   

 

3.3. Adaptive cancellation of real high voltage 

murmuring  

 

In this experiment a speech signal corresponding to 

sample-II contaminated with high voltage murmuring is 

given as in put to the filter. The filtering results are shown 

in figures 9 and 10. The SNR contrast is shown in Table-

II. 

 

3.4. Simulation Results for battle field noise removal 

 
 In this experiment the speech signal contaminated with 

a real battle field noise ( gun firing noise predominates in 

this noise ) is given as input to the adaptive filter shown in 

figure 2.  As the reference signal must be somewhat 

correlated with noise in the input, the noise signal is given 

as reference signal. The filtering results are shown in 

figures 11 and 12. To evaluate the performance of the 

algorithms signal-to-noise (SNR) improvement is 

measured and tabulated in Table II. 
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Figure 9: Typical filtering results of high voltage 

noiseremoval (a) Speech signal with high voltage noise, 
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(b) recovered signal using LMS algorithm, (c) recovered 

signal using NLMS algorithm. 

0 1 2 3 4 5 6

x 10
4

-2

0

2

(a)

0 1 2 3 4 5 6

x 10
4

-2

0

2

(b)

0 1 2 3 4 5 6

x 10
4

-2

0

2

(c)

0 1 2 3 4 5 6

x 10
4

-2

0

2

(d)

 
Figure 10: Typical filtering results of high voltage noise 

removal  (a) recovered signal using Karni’s VSSLMS 

algorithm, (b) recovered signal using Kwongi’s VSSLMS 

algorithm, (c) recovered signal using Mathew’s VSSLMS 

algorithm, (d) recovered signal using Aboulnasr’s 

VSSLMS algorithm. 
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Figure 11: Typical filtering results of battle field noise 

removal (a) Speech signal with battle field noise, (b) 

recovered signal using LMS algorithm, (c) recovered 

signal using NLMS algorithm. 
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Figure 12: Typical filtering results of battle field noise  

removal  (a) recovered signal using Karni’s VSSLMS 

algorithm, (b) recovered signal using Kwongi’s VSSLMS 

algorithm, (c) recovered signal using Mathew’s VSSLMS 

algorithm, (d) recovered signal using Aboulnasr’s 

VSSLMS algorithm. 

 

3.5. Simulation Results for speaker noise removal 

 

In this case speech signal contaminated with a 

loud speaker is given as input to the adaptive filter shown 

in figure 2.  As the reference signal must be somewhat 

correlated with noise in the input, the noise signal is given 

as reference signal. The filtering results are shown in 

figures 13 and 14. To evaluate the performance of the 

algorithms signal-to-noise (SNR) improvement is 

measured and tabulated in Table II. 
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Figure 13: Typical filtering results of speaker noise 

removal (a) Speech signal with speaker noise, (b) 

recovered signal using LMS algorithm, (c) recovered 

signal using NLMS algorithm. 
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Figure 14: Typical filtering results of speaker noise 

removal  (a) recovered signal using Karni’s VSSLMS 

algorithm, (b) recovered signal using Kwongi’s VSSLMS 

algorithm, (c) recovered signal using Mathew’s VSSLMS 

algorithm, (d) recovered signal using Aboulnasr’s 

VSSLMS algorithm. 

            Table II: SNR contrast of various algorithms. 

 
Sample 

Number 

SNR Imp. after  

LMS Filtering 

SNR Imp. after  

NLMS Filtering 

SNR Imp. after 

Karni’s VSSLMS 

Filtering 

SNR Imp. after 

Kwongs’s VSS 

LMS Filtering 

SNR Imp. after 

Mathew’s VSS 

LMS Filtering 

SNR Imp.after 

Aoulnasr’s VSSLMS 

Filtering 

Sample I 7.9095 6.3031 11.7786 11.9863 13.8720 15.7111 

Sample II 8.2398 7.8904 11.9872 12.2897 13.5021 15.3921 

Sample III 6.4891 6.6937 12.0739 12.9541 13.7289 14.9231 

Sample IV 7.3642 7.7183 12.4923 13.1054 14.0625 15.8232 

 

4. Conclusion 

        

In this paper the problem of noise removal from speech 

signals using VSSLMS based adaptive filtering is 

presented. For this, the same formats for representing the 

data as well as the filter coefficients as used for the LMS 

algorithm were chosen. As a result, the steps related to the 

filtering remains unchanged. The proposed treatment, 

however exploits the modifications in the weight update 

formula for all categories to its advantage and thus pushes 

up the speed over the respective LMS-based realizations. 

Our simulations, however, confirm that the ability of 
VSSLMS algorithms is better than conventional LMS and 

NLMS algorithms in terms of SNR improvement and 

convergence rate. Hence these algorithms are acceptable 

for all practical purposes. 
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